Executive Summary

Many institutional investors over the last decade have not realized their return objectives. This failure has reignited criticisms of the Modern Portfolio Theory (MPT) and Mean-Variance Optimization (MVO) framework that investors have relied on to set their asset allocation policies. We believe the MPT framework, despite its shortcomings, is still a useful planning tool to optimally allocate investments among asset classes. In our view, the main cause of unrealized return expectations has been the adoption of a static target or policy asset allocation by institutional investors. A target or policy asset allocation by definition implies that the set of expectations used to derive the asset allocation mix does not change. We believe the inability of a static asset allocation mix to accept new information is the main cause of unrealized return expectations. We discuss the shortcomings of a target policy allocation based on stale expectations. We believe an optimal portfolio should reflect the most recent changes in expectations with a dynamic asset allocation program.

Institutional Investors Adopt Static Asset Allocation

Investors seem to be ignoring the most important decision involved in constructing an optimal portfolio. Brinson, Hood, and Beebower [1986] suggested that 93.6% of the average return variation in U.S. pension plan portfolios from 1974 to 1983 can be explained by asset allocation policy mixes.1 After some controversy over the research, Ibbotson and Kaplan [2000] confirmed that in fact asset allocation explains approximately 90% of the variability of portfolio returns over time.2 Even after decades of research confirming that asset allocation will be the overwhelming determinant of portfolio returns, investors continue to turn a blind eye to asset allocation decisions when market conditions change. In Exhibit 1, we plot the average asset allocation exposures of public, corporate, and endowment plans in the U.S. during the last decade. The data confirm that institutional investors do in fact adhere to a policy asset allocation mix. The decrease in equity exposure since late 2007 can be mostly explained by market movement.

We believe a dynamic allocation program that encompasses the most recent expectations is superior to a “set it and forget it” approach to asset allocation.

Stale Expectations Implied By a Static Asset Allocation Mix

MVO and MPT, first introduced by Harry Markowitz in 1952, provide a framework for investors to construct an efficient frontier portfolio that achieves diversification benefits by holding assets or securities that are not perfectly correlated with each other. Since the introduction of the Markowitz mean-variance approach, many extensions have been developed, such as the Black-Litterman model optimization. For simplicity we focus on the original mean-variance approach in this paper.

Institutional investors typically set a policy or target asset allocation mix based on the following formula:

\[
\text{Asset Allocation}_t = f(\text{Investor Risk Tolerance}_t, \text{Market Expectations}_t).
\]

Armed with this breakthrough in modern finance, investors began to set policy asset allocation. Unfortunately, in the past decade many investors have failed to realize their expectations or objectives by employing this framework. For institutions that have a contractual liability stream, not realizing their expectations can lead to a dire situation. Some institutional and retail investors without the burden of a liability stream may have to rein in their ambitious objectives. We believe the main culprit in the failure to realize return objectives is the stale market expectations used to arrive at a policy allocation. A “target” policy allocation by definition implies that the expectations used to arrive at the optimal mix will not change, regardless of the most recent information. Please see Exhibit 2. Policy asset allocation mixes fail to incorporate new information from the market (Exhibit 2). The stale expectations limit investors to implementing portfolios along one efficient frontier. We believe a dynamic allocation program that encompasses the most recent expectations is superior to a “set it and forget it” approach to asset allocation. A dynamic asset allocation process allows the investor to move the efficient frontier as new information becomes available.
We can assume that most investors adhere to the broadly used 60/40 (stocks/bonds) asset allocation mix. We can reverse engineer the implied expected return from a 60/40 asset allocation mix by making some assumptions.3 In order to solve for the implied expected returns, we need to define a return target. The most frequently quoted return target seems to be approximately 8% for defined benefit plans. For risk and correlation estimates, we use realized stock (S&P 500® Index) and bond (Barclays Aggregate Bond Index) returns from 1976 through 2010 as inputs, which we use throughout the paper. To achieve a solution through reverse optimization, we define the most common mean variance utility function as follows:

\[U = w'\mu - \frac{\lambda}{2} w'\Sigma w \]

In this case we use \(\lambda = 2 \) as the risk aversion parameter.

3 No investment strategy or risk management technique can guarantee returns or eliminate risk in any market environment.
Expected returns in the Markowitz mean-variance process are the central inputs, and have the greatest effect on the optimal asset allocation. A change in the expectations can drastically alter the asset allocation mix.

According to the previously mentioned assumptions, a 60/40 stock/bond allocation implies expected average annual returns of 9.5% and 6% for stocks and bonds, respectively. The levels seem very reasonable, even close to our internal estimates. What we are more concerned with is that the implied expectations are static. We think this is an unrealistic assumption. Below we describe why expectations for asset class returns, risk, and correlation are not static as implied by a target asset allocation policy.

Expected Returns Are Not Static

Expected returns in the Markowitz mean-variance process are the central inputs, and have the greatest effect on the optimal asset allocation. A change in the expectations can drastically alter the asset allocation mix. In Exhibit 4, we show a framework for deconstructing expected returns. This method is the foundation to our beliefs that expectations change with new information, and can be applied to any financial asset that has a claim on future cash flows.

Exhibit 4: Expected Return Building Blocks

![Expected Return Building Blocks Diagram](source: Mellon Capital)

Expected inflation is embedded in nominal and real asset return expectations. Cash has historically achieved positive real returns above realized inflation. The positive real return of cash is the opportunity cost to defer consumption. Central banks conduct monetary policy by setting interest rates with the goal of adjusting consumption patterns in order to control inflation. The term premium is an element of the expected return that offers a premium as a result of the duration or length of the claims on the expected cash flows. The longer the duration or maturity of claims on future cash flow, the more the uncertainty. The market will offer a premium for those investors willing to exchange future uncertainty with today’s cash receipts. Inflation + real return + term premium can, in our view, be interpreted as safe assets that have sovereign characteristics or claims on future tax receipts.

4 T-bills are used as a proxy for cash in this analysis. See Exhibit 6.
Equity represents the lowest claim on the capital structure of a private firm. Equities also offer a risk premium for participation in future growth. Moving to private-sector claims from government-backed claims requires additional return components such as credit and equity risk premiums. The credit risk premium compensates the buyer for bearing the risk related to the issuer’s ability to pay back the debt, relative to sovereign debt. Equity represents the lowest claim on the capital structure of a private firm. Equities also offer a risk premium for participation in future growth. There are numerous ways to determine equity risk premiums. At Mellon Capital, we utilize a discounted cash flow model from forward-looking earnings expectations and the current price to derive an internal rate of return (IRR) on equity markets. The difference between the equity IRR and a representative long bond yield (represented by a 30-yr U.S. Treasury bond) is our interpretation of the market’s risk premium (please see Exhibit 5). Historical realized asset class returns have confirmed our theoretical framework over the long run (Exhibit 6).

Exhibit 5: Historical U.S. Equity Risk Premiums

Source: Mellon Capital, using historical market data.

Exhibit 6: Realized Asset Class Returns (1973 – 2011)

Source: Thomson Reuters Datastream, Barclays
We believe changes in inflation and real returns, as well as term, credit, and risk premiums should be reflected through a dynamic asset allocation process that encompasses the most recent expectations.

This framework for deconstructing expected returns allows investors to translate views on capital markets to expected return inputs for the MVO process. We believe changes in inflation and real returns, as well as term, credit, and risk premiums should be reflected through a dynamic asset allocation process that encompasses the most recent expectations.

Just how sensitive are the changes to expected returns in an MVO process? In Exhibit 7, we show the sensitivity of asset allocation mixes to a change in equity expected returns. The inputs are the same as in the previous reverse-optimization example. All other variables, including the utility function and risk-aversion level, are kept constant. A 5% change in equity expected return can shift the optimal asset allocation mix by more than 80%. For investors that adopt a static asset allocation policy, a 5% change in expected returns for any asset class may be difficult to justify. However, using our expected return framework, we have observed numerous instances of a 5% change to macro (inflation and GDP expectations) and valuation (credit and equity risk premiums) expectations over the last 30 years. Please see Exhibit 8, where we plot the forward twelve-month consensus forecast for inflation and GDP in the U.S. Furthermore, as shown in Exhibit 5, we have observed multiple periods of erratic fluctuations of 5% in expected equity risk premiums.

Exhibit 7: Illustration — Sensitivity of Optimal Asset Allocation Mix to Change in Equity Expected Returns

<table>
<thead>
<tr>
<th>Expected Returns</th>
<th>Asset Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stocks</td>
</tr>
<tr>
<td>6.50%</td>
<td>16%</td>
</tr>
<tr>
<td>7.50%</td>
<td>36%</td>
</tr>
<tr>
<td>8.50%</td>
<td>56%</td>
</tr>
<tr>
<td>9.50%</td>
<td>60%</td>
</tr>
<tr>
<td>10.50%</td>
<td>95%</td>
</tr>
<tr>
<td>11.50%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Mellon Capital

Exhibit 8: 12 Months Forward Looking Consensus Expectations

Source: Thomson Reuters Datastream, Survey of Professional Forecasters, Consensus Economics
We believe this notion of constant risk and correlation estimates implied by a policy asset allocation mix is the cause of unexpected risk and volatility in institutional portfolios.

Risk and Correlations Are Not Static
Risk and correlation estimates are foundations of the MPT and MVO. The Markowitz theory states that investors can minimize portfolio risk through diversification. Diversification benefits are achieved through securities or assets that do not move perfectly with each other. In a static asset allocation mix, the diversification benefits and the expected risk of the portfolio remain constant. We believe this notion of constant risk and correlation estimates implied by a policy asset allocation mix is the cause of unexpected risk and volatility in institutional portfolios.

Risk
Risk is defined as the standard deviation of the asset class returns by the MPT. Investors and academics have criticized the use of standard deviation as a measure of risk because of the implicit assumption of a normal distribution. Investors that adopt a policy or static asset allocation mix that assumes static risk estimates amplify this shortcoming. The static risk estimates used to derive the optimal asset allocation mix by definition assume a normal distribution, even when it is commonly recognized that certain asset classes do not have normal distributions. We believe policy asset allocation portfolios may be subjected to unexpected volatility as a result of the static expectations. In Exhibit 9, we show how changing stock risk estimates in a static 60/40 portfolio can elevate the overall total portfolio risk. Investors that assumed a 14% risk for stocks may be under the false assumption that the total portfolio risk was +/-9%, when in fact the actual stock risk was 24%, and one standard deviation on the total portfolio was +/-15%.

<table>
<thead>
<tr>
<th>Risk Estimate</th>
<th>Asset Allocation</th>
<th>Total Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>Stocks Bonds</td>
<td>Portfolio</td>
</tr>
<tr>
<td>14.00%</td>
<td>60% 40%</td>
<td>9.16%</td>
</tr>
<tr>
<td>16.00%</td>
<td>60% 40%</td>
<td>10.35%</td>
</tr>
<tr>
<td>18.00%</td>
<td>60% 40%</td>
<td>11.52%</td>
</tr>
<tr>
<td>20.00%</td>
<td>60% 40%</td>
<td>12.71%</td>
</tr>
<tr>
<td>22.00%</td>
<td>60% 40%</td>
<td>13.88%</td>
</tr>
<tr>
<td>24.00%</td>
<td>60% 40%</td>
<td>15.06%</td>
</tr>
</tbody>
</table>

Source: Mellon Capital

<table>
<thead>
<tr>
<th>Risk Estimates</th>
<th>Asset Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks Bonds</td>
<td>Stocks Bonds</td>
</tr>
<tr>
<td>14.00% 6.00%</td>
<td>98% 2%</td>
</tr>
<tr>
<td>16.00% 6.00%</td>
<td>76% 24%</td>
</tr>
<tr>
<td>18.00% 6.00%</td>
<td>60% 40%</td>
</tr>
<tr>
<td>20.00% 6.00%</td>
<td>48% 52%</td>
</tr>
<tr>
<td>22.00% 6.00%</td>
<td>40% 60%</td>
</tr>
<tr>
<td>24.00% 6.00%</td>
<td>33% 67%</td>
</tr>
</tbody>
</table>

Source: Mellon Capital
We believe adopting a dynamic asset allocation process that encompasses the most recent changes in risk expectations can potentially mitigate the probability of fat-tail events in the portfolio. There are some common risk models, such as GARCH,\(^5\) that give investors a systematic framework for dynamically adjusting risk. In Exhibit 10, we plot just how sensitive risk can be to the asset allocation mix in the MVO framework. We continue with our previous example of holding all variables constant except for the risk estimate on stocks. Raising the risk estimate from 14% to 24% can alter the optimal asset allocation to stocks by nearly 70%. Shifting away from assets that exhibit increasing uncertainty or risk allows the overall portfolio to mitigate unexpected tail events. Return distributions for the portfolio are likely to look more normal (exhibit less kurtosis) with a dynamic risk process.

Correlation

MPT is a mathematical formulation of the concept of diversification, whereby holding multiple asset classes or securities that have a correlation of less than one can achieve lower risk than holding one individual security or asset class. Investors that apply static correlation estimates may fail to realize diversification benefits implied by these correlation estimates. Correlations across asset classes such as stocks and bonds are a function of the macroeconomic environment. In Exhibit 11, we plot the correlation between stocks and bonds relative to the changes in inflation. The negative correlation between stocks and bonds in the last 20 years may become a myth if we shift to a period of higher inflation. From 1968 to late 1970s, the U.S. went through an unprecedented period of inflation uncertainty. After the appointment of Federal Reserve Chairman Paul Volcker, inflation was brought under control. Please see Exhibit 12, where we plot realized 10-year correlations between equities and fixed income.

\(^5\) Generalized AutoRegressive Conditional Heteroskedasticity is a modeling approach used to estimate volatility in financial markets.
In a crisis, correlations converge and limit the expected benefits of diversification. After Lehman Brothers failed in 2008, nearly all risky assets declined in value.

Furthermore, in a crisis, correlations converge and limit the expected benefits of diversification. After Lehman Brothers failed in 2008, nearly all risky assets declined in value. Historically reliable diversifiers such as commodities and REITs did provide benefits. Exhibits 13, 14, and 15 show that inter- and intra-asset class correlations jumped higher following the Lehman failure.

Source: Mellon Capital, using Bloomberg data.
We believe dynamic asset allocation program that assimilates changes to correlation estimates allows for better risk control. Under-or overestimation of correlation estimates can lead to nonefficient-frontier portfolios that incorrectly determine the optimal asset allocation and total portfolio risk.

The changes in correlations across and within asset classes can alter the portfolio risk and the optimal asset allocation mix. In Exhibit 16, we plot the changes in overall portfolio risk by applying different correlation estimates. In Exhibit 17, we plot how sensitive diversification benefits can be to an optimal portfolio asset allocation mix. A static correlation estimate can over- or underestimate the diversification benefit across and within asset classes. We believe dynamic asset allocation program that assimilates changes to correlation estimates allows for better risk management. Under- or overestimation of correlation estimates can lead to nonefficient-frontier portfolios that incorrectly determine the optimal asset allocation and total portfolio risk.
A dynamic asset allocation process may resolve some shortcomings of the strategic asset allocation portfolio. Most importantly, the dynamic asset allocation process allows a portfolio to reflect new information and adapt to a more optimal mix.

Exhibit 16: Correlation and Risk

![Correlation and Risk Chart]

Source: Mellon Capital

Exhibit 17: Illustration — Sensitivity of Diversification Benefits in an Optimal Portfolio Asset Allocation Mix

<table>
<thead>
<tr>
<th>S/B Correlation</th>
<th>Asset Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stocks</td>
</tr>
<tr>
<td>-0.40</td>
<td>68%</td>
</tr>
<tr>
<td>-0.20</td>
<td>70%</td>
</tr>
<tr>
<td>0.00</td>
<td>72%</td>
</tr>
<tr>
<td>0.20</td>
<td>78%</td>
</tr>
<tr>
<td>0.40</td>
<td>80%</td>
</tr>
</tbody>
</table>

Source: Mellon Capital

Dynamic Asset Allocation

A dynamic asset allocation process may resolve some shortcomings of the strategic asset allocation portfolio. Most importantly, the dynamic asset allocation process allows a portfolio to reflect new information and adapt to a more optimal mix. Institutional investors would be unlikely to adopt a dynamic asset allocation overnight, for multiple reasons. The sheer size of institutional portfolios, internal resource constraints, and the board approval process may represent significant hurdles. Over the years investors have continually allocated capital to tactical asset allocation strategies that, combined with their policy or target asset allocation, can closely mirror a dynamic asset allocation.
Conclusion

We believe the concept of a policy or strategic asset allocation is flawed. In our view, the MPT and MVO framework that investors employ to arrive at the optimal allocation is based on expectations. Expectations change as a result of new information from the marketplace. A policy asset allocation’s inability to accept new information can lead to unrealized return expectations, inefficient portfolios, unexpected volatility, and tail risks. We believe a dynamic asset allocation program that adjusts expectations by incorporating new information allows for a higher probability of achieving return expectations and better risk management.
The **S&P 500 Index** consists of 500 stocks chosen for market size, liquidity and industry group representation. It is a market-value-weighted index (stock price times number of shares outstanding), with each stock’s weight in the index proportionate to its value. The index is one of the most widely used benchmarks of U.S. equity performance. The Barclays Capital U.S. Aggregate Index covers the U.S. Dollar denominated investment grade, fixed-rate, taxable bond market of SEC-registered securities.

CAC 40 is the French stock market index that tracks the 40 largest French stocks based on market capitalization on the Paris Bourse (stock exchange).

Dow Jones Europe Stoxx: The DAX (Deutscher Aktien Index, formerly Deutscher Aktien Index (German stock index) is a blue chip stock market index consisting of the 30 major German companies trading on the Frankfurt Stock Exchange.

The **FTSE 100 Index** is a share index of the 100 most highly capitalised UK companies listed on the London Stock Exchange.

Tokyo Stock Price Index, commonly known as TOPIX is a stock market index for the Tokyo Stock Exchange (TSE) in Japan, tracking all domestic companies of the exchange’s First Section. It is calculated and published by the TSE. As of 1 February 2011, there are 1,669 companies listed on the First Section of the TSE, and the market value for the index was 197.4 trillion yen.

The **S&P GSCI** (formerly the Goldman Sachs Commodity Index) serves as a benchmark for investment in the commodity markets and as a measure of commodity performance over time. It is a tradable index that is readily available to market participants of the Chicago Mercantile Exchange. The index was originally developed by Goldman Sachs. In 2007, ownership transferred to Standard & Poors, who currently own and publish it. Futures of the S&P GSCI use a multiple of 250. The index contains a much higher exposure to energy than other commodity price indices such as the Dow Jones–AIG Commodity Index.

The **MSCI EAFE Index** is a stock market index that is designed to measure the equity market performance of developed markets outside of the U.S. & Canada.

The **Dow Jones REIT Composite Index** contains all the publicly traded U.S. REITs in the Dow Jones U.S. stock universe. The Index, which is further subdivided into equity, mortgage and hybrid sub-categories, also serves as the selection universe for the REITs in the investable Dow Jones U.S. Select REIT Index and the Dow Jones Real Estate Index.

Merrill Lynch All Convertible Index consists of convertible bonds traded in the U.S. dollar denominated investment grade and non investment grade convertible securities sold into the U.S. market and publicly traded in the United States.

The indexes are trademarks of the foregoing licensers and are used herein solely for comparative purposes. The foregoing index licensers do no sponsor, endorse, sell or promote the investment strategies or products mentioned in this paper, and they make no representation regarding the advisability of investing in the products or strategies described herein.
BNY Mellon Asset Management is one of the world’s leading asset management organizations, encompassing BNY Mellon’s affiliated investment management firms and global distribution companies. BNY Mellon is the corporate brand of The Bank of New York Mellon Corporation. • The statements and opinions expressed in this document are those of the authors as of the date of the article; are subject to change as economic and market conditions dictate, and do not necessarily represent the views of BNY Mellon, BNY Mellon Asset Management International or any of their respective affiliates. This document is of general nature, does not constitute legal, tax, accounting or other professional counsel or investment advice, is not predictive of future performance, and should not be construed as an offer to sell or a solicitation to buy any security or make an offer where otherwise unlawful. The information has been provided without taking into account the investment objective, financial situation or needs of any particular person. BNY Mellon Asset Management International Limited and its affiliates are not responsible for any subsequent investment advice given based on the information supplied.

Past performance is not a guide to future performance. The value of investments and the income from them is not guaranteed and can fall as well as rise due to stock market and currency movements. When you sell your investment you may get back less than you originally invested. • While the information in this document is not intended to be investment advice, it may be deemed a solicitation in certain jurisdictions. Accordingly, where this document is used or distributed in any non-U.S. jurisdiction, the information provided is for use by professional and wholesale investors only and not for onward distribution to, or to be relied upon by, retail investors. • Products or services described in this document are provided by BNY Mellon, its subsidiaries, affiliates or related companies and may be provided in various countries by one or more of these companies where authorized and regulated as required within each jurisdiction. This document is not intended for distribution to, or use by, any person or entity in any jurisdiction or country in which such distribution or use would be contrary to local law or regulation. This document may not be distributed or used for the purpose of offers or solicitations in any jurisdiction or in any circumstances in which such offers or solicitations are unlawful or not authorized, or where there would be, by virtue of such distribution, new or additional registration requirements. Persons into whose possession this document comes are required to inform themselves about and to observe any restrictions that apply to the distribution of this document in their jurisdiction. The investment products and services mentioned here are not insured by the FDIC (or any other state or federal agency), are not deposits of or guaranteed by any bank, and may lose value. • This document should not be published in hard copy, electronic form, via the web or in any other medium accessible to the public, unless authorized by BNY Mellon Asset Management International Limited.

In Australia, this document is issued by BNY Mellon Asset Management Australia Limited (ABN 56 102 482 815, AFSL License No. 227865) located at Level 6, 7 Macquarie Place, Sydney, NSW 2000. Authorized and regulated by the Australian Securities & Investments Commission. • In Brazil, this document is issued by BNY Mellon Serviços Financeiros DTVM S.A., Av. Presidente Wilson, 231, 11th floor, Rio de Janeiro, RJ, Brazil, CEP 20230-905. BNY Mellon Serviços Financeiros DTVM S.A. is a Financial Institution, duly authorized by the Brazilian Central Bank to provide securities portfolio managing services under Declaration Act No. 4,620, issued on December 19, 1997. • Investment vehicles may be offered and sold in Canada through BNY Mellon Asset Management Canada Ltd., a Portfolio Manager, Exempt Market Dealer and Investment Fund Manager. • In Dubai, United Arab Emirates, this document is issued by the Dubai branch of The Bank of New York Mellon, which is regulated by the Dubai Financial Services Authority. • In Germany, this document is issued by WestLB Mellon Asset Management Kapitalanlagegesellschaft mbH, which is regulated by the Bundesanstalt für Finanzdienstleistungsaufsicht. WestLB Mellon Asset Management Holdings Limited is a 50:50 joint venture between BNY Mellon and WestLB AG. WestLB Mellon Asset Management Kapitalanlagegesellschaft mbH is a wholly owned subsidiary of this joint venture. • If this document is used or distributed in Hong Kong, it is issued by BNY Mellon Asset Management Hong Kong Limited, whose business address is Level 14, Three Pacific Place, 1 Queen’s Road East, Hong Kong. BNY Mellon Asset Management Hong Kong Limited is regulated by the Hong Kong Securities and Futures Commission and its registered office is at 6th floor, Alexandra House, 1B Chater Road, Central, Hong Kong. • BNY Mellon Asset Management Japan Limited is regulated by the Financial Instruments Business Operator with license no 406 (Kinsho) at the Commissioner of Kanto Local Finance Bureau and is a Member of the Investment Trusts Association, Japan and Japan Securities Investment Advisers Association. • In Korea, this document is issued by BNY Mellon AM Korea Limited for presentation to professional investors. BNY Mellon AM Korea Limited, 21/F Seoul Finance Center, 84 Taepyungro 1-ga, Jung-gu, Seoul, Korea. Regulated by the Financial Supervisory Service. • In Singapore, this document is issued by The Bank of New York Mellon, Singapore Branch for presentation to professional investors. The Bank of New York Mellon, Singapore Branch, One Temasek Avenue, #02-01 Millenia Tower, Singapore 039192. Regulated by the Monetary Authority of Singapore. • This document is issued in the UK and in mainland Europe (excluding Germany), by BNY Mellon Asset Management International Limited, 160 Queen Victoria Street, London EC4V 4LA. Registered in England No. 1118580. Authorized and regulated by the Financial Services Authority. • This document is issued in the United States by BNY Mellon Asset Management.

BNY Mellon holds over 90% of the parent holding company of The Alcentra Group. The Group refers to these affiliated companies: Alcentra, Ltd and Alcentra NY, LLC. Only Alcentra NY, LLC offers services in the U.S. • BNY Mellon ARX is the brand used to describe the Brazilian investment capabilities of BNY Mellon ARX Investimentos Ltda. • BNY Mellon Western FMC, Insight Investment and WestLB Mellon Asset Management do not offer services in the U.S. This presentation does not constitute an offer to sell, or a solicitation of an offer to purchase, any of the fund’s shares or funds or to any U.S. investor, or where otherwise prohibited by law. • BNY Mellon holds a 20% interest in Siguler Guff & Company LP and certain related entities (including Siguler Guff Advisers LLC). • BNY Mellon Cash Investment Strategies is a division of The Dreyfus Corporation. • BNY Mellon Western Fund Management Company Limited is a joint venture between BNY Mellon (49%) and China based Western Securities Company Ltd. (51%). The firm does not offer services outside of the People’s Republic of China. • Hamon’s services are offered in the U.S. by Hamon Asian Advisors Limited. BNY Mellon holds a 19.9% interest in Hamon Investment Group Pte Limited, which is the parent of Hamon Asian Advisors Limited and Hamon Asset Management Limited. • The Newton Group refers to the following group of companies: Newton Investment Management Limited, Newton Capital Management Limited, Newton International Investment Management Limited, Newton Capital Management LLC, and Newton Fund Managers (C) Limited. Except for Newton Capital Management LLC and Newton Capital Management, none of the other Newton companies offers services in the U.S. • BNY Mellon Asset Management International Limited and any other BNY Mellon entity mentioned above are all ultimately owned by BNY Mellon.